Summary

Collagen is a major structural protein that forms various macromolecular organizations in tissues and is responsible for the biomechanical properties of most organs. Second harmonic generation (SHG) microscopy is a valuable imaging technique to probe collagen fibrillar organization. This work is aimed at implementing and characterizing polarization-resolved SHG (P-SHG) and coupling this technique to biomechanical assays to provide multiscale structural information on collagen tissues.

We first studied the linear propagation effects that affect P-SHG imaging of thick anisotropic tissues such as collagen tissues. We developed a theoretical model that accounts for birefringence, diattenuation, and polarization scrambling, and obtained an excellent agreement with our P-SHG measurements in rat-tail tendon. Moreover we performed numerical simulations of light propagation and harmonic generation in tendon and cornea, which confirmed the crucial role of birefringence for P-SHG signal formation.

We then implemented a new experimental device that combined mechanical testing with SHG imaging. It enabled visualization of the tendon crimp morphology at the micrometer scale during macroscopic strain–stress measurements. Our results proved that continuous SHG imaging allows for elucidating the link between macroscopic response and microscopic structure of tissues.

Finally, we developed a theoretical model, which relates the P-SHG signal anisotropy to the orientational order of its SHG-capable constituents at submicrometer scale. We tested our model by performing P-SHG measurements in increasingly stretched tendon, and successfully characterized variations of fibril disorder within fascicle with strain.

Key words: second harmonic microscopy, optical polarization, collagen, biomechanics, numerical simulations, biological tissues.

Résumé

Le collagène est une protéine de structure majeure qui forme diverses organisations macromoléculaires dans les tissus, et est responsable des propriétés biomécaniques de la plupart des organes. La génération de seconde harmonique (SHG) est une technique d’imagerie adaptée pour sonder l’organisation fibrillaire du collagène. Ce travail vise à implémenter et à caractériser la SHG résolue en polarisation (P-SHG), et à coupler cette technique à des essais biomécaniques pour obtenir des informations structurelles multiéchelles sur les tissus collagéniques.

Nous avons d’abord étudié les effets optiques linéaires qui influencent l’imagerie P-SHG dans les tissus anisotropes denses tels que les tissus collagéniques. Nous avons développé un modèle théorique qui prend en compte la birefringence, la diattenuation et le mélange de polarisation, et nous avons obtenu un excellent accord avec nos mesures P-SHG dans le tendon de queue de rat. De plus, nous avons effectué des simulations numériques de la propagation du faisceau d’excitation et de la formation du signal SHG dans le tendon et la cornée. Ces simulations ont confirmé le rôle crucial de la birefringence en P-SHG.

Nous avons ensuite mis en place un dispositif expérimental combinant des essais mécaniques avec l’imagerie SHG. Cela a permis de visualiser la morphologie du tendon à l’échelle micrométrique pendant les essais mécaniques macroscopiques. Nos résultats ont montré que l’imagerie SHG sous traction permet d’élucider le lien entre la réponse macroscopique des tissus et leur structure microscopique.


Mots-clés : microscopie de seconde harmonique, polarisation optique, collagène, biomécanique, simulations numériques, tissus biologiques.