Nonlinear-optical approach to problem of space debris tracking and removal

O. Kulagin, I. Gorbunov

Institute of Applied Physics Russian Academy of Sciences, N.Novgorod, Russia
Space debris threats and application of phase conjugation methods for concentrating the debris illumination

- Nearly 90% of orbital debris has dimensions ~ 1-5 cm. This debris is not tracked.
- Debris removal demands a high density in illumination laser energy, though it is restricted by the atmospheric turbulence.
- Space debris illumination concentration by laser point narrowing can be achieved by means of phase conjugation of the debris scattered illumination.
- When phase conjugation compensates for turbulent distortions, the conjugated signal will be concentrated on the debris to an accuracy that is determined not by the turbulent scattering angle (~10^{-5} \; \text{rad}), but instead by the receiving aperture of laser amplifier (e.g., ~ 5 \cdot 10^{-7} \; \text{rad} for the primary mirror of 200 cm).
What is phase conjugation and four wave mixing?

Brillouin enhanced four wave mixing

Phase conjugation mirror
Nonlinear optical (BEFWM) laser image amplifier

- The sensitivity is limited by quantum noise and is near $4.8 \cdot 10^{-19}$ J (approximately two photons) per pixel;
- Extremely narrow frequency band corresponds to two frequency-temporal modes (input spectral band ~ 0.001 nm and response time of ~ 30 nsec);
- Comparatively wide field of view (350 X 350 pixels in image);
- High coefficient of amplification (amplifies weak signal by $\sim 10^{12}$).

A two-step concentration of laser illumination of orbital debris is sufficient for small-scale debris tracked by the nonlinear optical system at distances from 600 to 800 km even for a moderate level of illumination pulse energy (~ 10 J).
The scheme for concentrating illumination

Laser facility for model experiments at open-air test field with turbulence scaling
Creation of artificial turbulence

Desired $r_0 \sim 1-2 \text{ см}$

$r_0 \approx (k^2 C_n^2 L)^{-3/5}$

$C_n^2 \approx 10^{-12} C_T^2$

$C_n^2 = [cm^{-2/3}] \quad C_T^2 = [\text{deg}^2/cm^{2/3}]$

$C_T^2 |z_1-z_2|^{2/3} = (dT/dz)^2 |z_1-z_2|^2$

Three heating-fans (MASTER B15) provide the required 50 kW
Measurements of turbulent strength along the path

With heating $C_n^2 = (4-20-170) \times 10^{-14} m^{-2/3}$

Without heating $C_n^2 = (2-5-7) \times 10^{-14} m^{-2/3}$
Detection of illumination concentration on remote target
Active impact on space debris using intense lasers

Physical mechanisms of recoil impulse generation:

• Developed surface evaporation of the debris

The maximum efficiency of recoil impulse at laser intensity of $I \sim 10^6 \text{ W/cm}^2$

• Optical breakdown in the vapor. Laser-plasma absorption

For near IR lasers ($\lambda = 1.06$ μm): $I > 5 \times 10^8 \text{ W/cm}^2$
Propulsion of SD object to elliptical low-perigee orbit

$$E = \frac{mv^2}{2} - \frac{G \cdot M \cdot m}{r}$$

Total energy of SD object

$$v = v_r + v_\varphi \quad \overrightarrow{L} = [\overrightarrow{r}, \overrightarrow{p}] = m \cdot v_\varphi \cdot r$$

$$r_{\text{min}} = \frac{-GMm}{2E} \left(1 - \sqrt{1 + \frac{2LE}{(GM)^2 m^3}}\right)$$

$$v_r = 0$$

Round orbit: E_0, v_0, L_0, p_0

Recoil change of energy and angular momentum:

$$\Delta E = E_1 - E_0 = \frac{m}{2} (v_1^2 - v_0^2) = \frac{p^2}{2m} - \frac{p \cdot v_0}{\sqrt{2}}$$

$$\Delta L = L_1 - L_0 = -\frac{p \cdot r_0}{\sqrt{2}}$$

Elliptical orbit: E_1, v_1, L_1, p_1

SD object: $m = 1$ kg; $v_0 = 7.62$ km/c

at $r_0 = R_\text{s} + h_0 = 6371$ km + 500 km

this SD object shifts to desirable $r_{\text{min}} = 200$ km

if recoil momentum is provided $p = 114$ kg·m/c

taking into consideration a mass defect Δm caused by evaporation we have $p = 106.7$ kg·m/c
Laser energy evaluation for SD object propulsion

It is assumed for SD \(m = 1 \) kg, velocity \(v_0 = 7.62 \) km/c
a rebound velocity of vapoured part \(- v_{Al} \)
(in the movable frame of reference)
we have got \(v_{Al} \) from relation:
\[
\frac{m_{Al} v_{Al}}{2} = \frac{3}{2} kT
\]
For Aluminium atom \(m_{Al} = 4.484 \cdot 10^{-26} \) kg
And temperature \(T = 2770 \) K \(v_{Al} = 1.60 \) km/c and \(\Delta m = 6.7\% \ m \)

We have got a desirable energy of laser pulse by using Aluminium parameters

- Melting heat \(\lambda = 3.9 \cdot 10^5 \) J/kg
- Evaporation heat \(L = 9.22 \cdot 10^6 \) J/kg
- Heat capacity \(c = 930 \) J/(kg·K)

\[
W = \Delta m(\lambda + L + c\Delta T) = \Delta m(3.9 \cdot 10^5 + 9.22 \cdot 10^6 + 930 \cdot 2770) = 807 \) kJ
\]
As a conclusion, a laser pulse energy of 1 kJ (at repetition rate of 100 Hz and efficiency of conversion into the recoil pulse \~10\%) is acceptable to provide desirable propulsion during one pass of SD object by orbit

Hence, a laser output \~ 1kJ x 10 \) ns x 100 Hz looks sufficient for small LEO orbital debris removal using non-linear optical laser energy concentration.
Possible full-scale experiment of model SD object control by laser amplifier with BEFWM

Purposes:
- Measurements of recoil pulse;
- Investigation of SD movement dynamics (rotation, oscillations, etc.);
- Influence of SD material and laser parameters

- The poor quality primary mirror is acceptable because of using phase conjugation technique.
- Laser parameter combination of 30 J x 10 ns x 30 Hz is enough to shift a model LEO object by ~100 m of orbit height due to the laser recoil impact during one orbital pass