Epitaxial growth of silicon thin films by low temperature RF-PECVD from SiF₄/H₂/Ar chemistry

Ronan Léa, Jean-Christophe Dornstetter, Farah Haddad, Gilles Poulain, Pere Roca i Cabarrocas

Motivation

Diffused emitter drawbacks:
- Difficult to achieve a sharp junction
- Too highly doped regions → Auger recombination
- Additional step of PSG/BSG removal by wet etching

Suggested solution: Epitaxial emitter
- Good doping control (by PH₃/B₂H₆ flow rate)
- Better Vₜ and reduction of J₀ expected [1,2] by doping profile optimization

Advantages of low temperature epitaxy by PECVD:
- Low dopants diffusion (200°C process)
- Sharp junction
- Low thermal stress
- Easy scale-up and integration in industry

SiF₄/H₂/Ar plasma chemistry advantages:
- Better understanding based on a phenomenological model [5]
- Lower amount of oxygen incorporated in the layers [6]
- Better crystallinity and lower defects density expected [7],[8],[9]
- Very smooth interface between the wafer and the epitaxial layer [10]

Intrinsic epitaxy

- Thick high quality epitaxial layers achieved
 - 2.5µm thick epitaxy with a very smooth interface has been achieved and diffraction patterns show no differences.

Doped epitaxy

- n doping of epitaxial layers
 - Strong effect of PH₃ on epitaxy even for low concentration (0.1%)

- p doping of epitaxial layers
 - Lower effect of B₂H₆ on epitaxy even for higher concentration (1%)

Solar cell and perspectives

- Hall effect measurement
- XRD study of doped epitaxial thin films
- Improvement of uniformity

References