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Abstract

This paper presents a methodology to determine the preferences of an

individual facing risk in the framework of (non)-expected utility theory.

When individual preference satisfies a given invariance property, his util-

ity function is solution of a functional equation associated to a specific

transformation. Conversely, there exist transformations characterizing

any given utility function and its invariance property. More precisely,

invariance with respect to two transformations uniquely determines the

individual utility function. We provide examples of such transformations

for CARA or CRRA utility, but also with any other utility specification

and discuss the example of DARA and IRRA specifications.
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1 Introduction

It has been widely accepted for a long time that preferences towards risk matter.

Individual preferences towards risk play a crucial role in finance. For example,

it is widely agreed that borrowing, saving, retirement or portfolio optimization

crucially depend on the attitude towards risk (see Eeckhoudt et al., 2005). From

the point of view of financial institutions, the design of standardized portfolios

(portfolio positioning) crucially depends on the specification of the utility func-

tion and on the distribution of risk aversion parameters in the population of

investors.

However, it is only very recently that financial institutions have started to

develop questionnaires to measure the level or risk tolerance of their customers,

in order to provide a better investment advice. 1 Most of these questionnaires

fail to include lottery-type questions necessary to obtain a quantitative measure

of the investor’s attitude towards risk. As a result, such ordinal measures do not

allow to conclude which portfolio best fits investor’s preferences. A quantitative

analysis, required to obtain such an advice, should involve: (1) the modelling

of individual financial decision; (2) the elicitation of the utility function  ()

and of the probability weighting function, which best capture individual’s pref-

erences, and (3) the measurement of the relevant parameters of given utility

and weighting functions. Requirement (3) has received much attention in the

academic literature (see Keeney and Raiffa, 1976; Diecidue et al. 2009).

Large surveys have been administered by public institutions and scholars

to better understand the determinants of risk attitudes. These surveys differ

from other ones since they involve more precise and quantitative questions:

respondents are typically faced with lotteries (either based on some exogenous

monetary amounts, or based on some fraction of their wage). Such surveys have

been administrated in several countries and in different specific contexts: saving,

retirement, investment, or in more general contexts such as health, smoking, car

driving or finance. The interested reader is referred, for example, to Arrondel

et al. (2005) for France, Dohmen et al. (2005) for Germany, Guiso and Paiella

(2005) for Italy, Donkers et al. (2001), Booij and van de Kuilen (2009) for the

Netherlands or Barsky, Juster et al. (1997) for the US. These studies allow

investigating the determinants of risk aversion and not so much eliciting utility

functions which best represent individual preferences, as for Requirement (2).

Indeed, the major drawback of this study is that nothing is done to validate the

type of utility function which should be used.

Methods for eliciting the utilities are difficult to construct and implement.

As a result, many studies assume that the individual’s utility function is charac-

terized by a constant relative (or a absolute) risk aversion. Often, a single value

for the degree of relative risk aversion is considered. Unfortunately, this ho-

mogeneity assumption may lead to misleading conclusions, and even misleading

1 In Europe, the use of risk questionnaires is compulsory since November 2007 (European

MiFID directive, http://ec.europa.eu/internal_market/securities/isd/mifid_en.htm).
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estimated parameters. Alternatively, a prespecified distribution of risk aversion

is considered. Specific functional forms such as, for example, CRRA or CARA

are justified by the tractability of such specifications. However, their use is not

innocuous, as illustrated by de Palma and Prigent (2008), who compare differ-

ent utility specifications for portfolio optimization. In this paper, we would like

to go one step further and investigate the rationale for choosing a specific utility

specification. We propose an operational way to construct lotteries allowing to

test functional forms, which best represent individual preferences.

We present a general method for eliciting utilities in the context of expected2

and non-expected utility, especially the RDU (for example the weighted utility

as well as the cumulative prospect theory of Tversky and Kahneman, 1992).

This method allows separating the elicitation of utility function from probability

weighting function, without restricting to expected utility maximization. Our

approach is therefore an alternative to the trade-offmethod proposed by Wakker

and Deneffe (1996), and Abdellaoui (2000). The main difference concerns the

way the method can be used with real data on observed behavior, focussing on

the interpretation/modelling of the error term, as illustrated in de Palma et al.

(2008).

The basic idea is that, for a given utility functional form, there exist trans-

formations of the lotteries faced by an individual so that if this individual is

indifferent between two lotteries, he will be indifferent between the transforma-

tions of these two lotteries. A utility functional form can then be identified by

a transformation which keeps indifference relationship invariant. That is to say,

we wish to find a set of parametrized transformations Ψ () of the outcomes

of lotteries, such that an individual who is indifferent between two lotteries re-

mains indifferent between the corresponding two transformed lotteries if and

only if his preference are represented by a utility function  (). More precisely,

we show that indifference with respect to two families of transformations allows

to uniquely determine any utility function. We provide an operational way to

construct these transformations.

A similar approach has been used by Miyamoto and Wakker (1996) for the

special cases of CARA or CRRA utility functions. Considering the CARA util-

ity function, it is easy to see that if an individual is indifferent between two

lotteries L1 and L2, then he should also be indifferent between Ψ (L1) and,
Ψ (L2), where Ψ () denotes the additive transformation of the outcomes of
the lotteries, with shift parameter . An additive transformation acts as an

excise tax. Additive invariance means that if an individual is indifferent be-

tween two lotteries, s/he will remain indifferent between the same two lotteries

shifted by the same amount . As shown by Keeney and Raiffa 1976), the util-

ity is a linear/exponential function if and only if it is invariant under addition

of a constant. Such results for the additive and multiplicative transformations

2Expected utility theory has been criticized by some empirical and theoretical studies (see

the arguments in favour and against this theory by Allais, 1953, Kahneman and Tversky,

1979, or Epstein and Schneider, 2003).
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are also proved for rank-dependent utility and cumulative prospect theory (see

Miyamoto 1988; Wakker and Tversky 1993; Miyamoto and Wakker, 1996; Dy-

ckerhoff, 1994; Fishburn, 1995).

However, indifference with respect to the additive transformation Ψ () does

not mean that the preferences are unique, and only coherent with the CARA

specification. There exists another solution, which is here straightforward to

find: the linear utility function corresponding to risk-neutral preferences. The

use of a second transformation, for example Ψ (), which for example multiplies

all outcomes of lotteries by the same constant , will allow (in case multiplica-

tive invariance is rejected) to reject the second solution (linear utility) and keep

the CARA utility function as the unique representation of preferences. A mul-

tiplicative transformation acts as inflation. We use lotteries with continuous

distributions for two reasons. First, the continuous version of the RDU al-

lows the determination of the utility function directly on the whole range (here

(), for all  ∈ R+). Second, concerning applications in finance, we can pro-
pose lotteries corresponding to actual asset returns, which have continuous cdf

(lognormal distributions for example).

The paper is organized as follows. In Section 2, we introduce the general

result and show that the utility functions which preserve invariance with respect

to a family of transformations obey a functional equation (see Theorem 1).

In Section 3, we show that two transformations are enough (and needed) to

uniquely elicit individual preferences (see Theorem 2). Before the conclusion

(Section 5), in Section 4, using the functional equations derived in Section 2, we

provide a characterization of several standard utility functions (CARA, CRRA

and also a DARA and IRRA utility) and construct the corresponding invariant

transformations. We also show that our approach is valid for the CPT case.

The proofs of technical results are relegated to the Appendix.

2 The general result

The main result of this section is that the invariance of preferences with re-

spect to transformation of outcomes induce strong restrictions on individual

preferences. More precisely, if whenever the individual is indifferent between

two lotteries, she is also indifferent between any two lotteries obtained from

the previous ones by a given family of transformations, then his utility function

must be solution of specific functional equations. These functional equations

characterize individual preferences.

We suppose that the individual maximizes an expectation of his utility 

with possible modifications of the initial probability distribution. This frame-

work is quite general: it includes for example the weighted utility introduced

in Chew (1989), the rank-dependent utility (see Segal, 1989) or the cumulative

prospect theory of Tversky and Kahneman, (1992). We consider probability

distributions associated to lotteries having density functions (pdf). Indeed,

standard weak convergence results, for example basic Monte Carlo simulations
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(see Prigent, 2003) prove that any lottery with a pdf is the limit of sequences

of discrete lotteries. Then, it is easily shown that, if the invariance property is

satisfied for any two discrete lotteries, then it must be satisfied for any lotteries

associated to pdf. We illustrate the convergence result for the CPT case. Tver-

sky and Kahneman (1992) have introduced on one hand specific utility functions

− and + for losses and gains, on the other hand transformation functions

− and + of the cumulative distributions  .

Proposition 1 The continuous version of the utility  of the lottery for the

CPT case is given by:

 () =

Z ∗



− ()−0[ ()]()+
Z ∞
∗

+ ()+
0
[1−  ()]()

Proof. See Appendix.

In what follows, we provide general results assuming that the weighting func-

tion, associated to the probability modification, corresponds to a transformation

of the true pdf into another pdf. We consider outcomes that are positive.3

Assumption 1 The weighting function corresponds to a surjective functional

 : P −→ P, where P denotes the set of all pdf. This means that:

• For any pdf  on R+ () is positive.

• For any pdf  on R+
Z
R+

() ()  = 1.

• For any pdf e on R+, there exists a pdf  on R+such that () = e .4
This assumption is obviously satisfied for the standard expected utility max-

imization, since in that case, we simply have () =  . This is a quite general

assumption which is valid in particular in the CPT case (see Section 4.4).

Proposition 2 For any utility function  ()  there exists a non-negative func-

tion  () satisfying

Z
R+

 ()  = 1, and such that the function  () belongs to

the Hilbert space L2 (R+  ()), where the measure  is defined by  () =

 () .

Proof. See Appendix.

Consider now a utility function  () : R+ → R, which is assumed to be
continuous and non-decreasing. We denote by  the lottery defined on the set

of outcomes R+ with the probability density function  :  = (R+ ).

3For example, these outcomes are portfolio returns. Instead of R+, we could also consider
any interval  of R, with no empty interior.

4More generally, we can suppose that () =   , where  is a pdf and  is a non neg-

ative constant. Since the invariance conditions that we examine correspond to equalities of

expectations, we can assume that  = 1.
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Definition 1 Let U () define the expected utility of the lottery  with respect
to the utility function  () under the probability associated to the density  :

U () =
Z
R+

 ()  () 

Let us consider the transformation of outcomes , where  denotes a con-

tinuous and non-decreasing function from R+ to R+. The transformation of the
lottery  with respect to  is denoted by 


 (


 =  ()).

Definition 2 Preference  () is invariant with respect to the transformation

 if the following condition holds: for any lotteries 1 and 2,

U (1) = U (2)⇒ U ¡1¢ = U ¡2¢  (1)

Condition (1) is equivalent to:Z
R+

 ()

∙
(1) ()− (2) ()

 ()

¸
 ()  = 0

=⇒Z
R+

 (())

∙
(1)− (2) ()

 ()

¸
 ()  = 0.

Now, we begin by establishing a functional analysis lemma (Proposition 3),

which allows the characterization of utility invariance by means of orthogonal-

ity. Then, we deduce our main general result about characterization of the

utility function through invariance with respect to lottery transformations (see

Theorem 1).

Proposition 3 Consider the space  that can be spanned from the set of func-

tions, which are differences between transformations of two different density

functions:

 =  

∙½
 |∃1 and 2   = (1)− (2)



¾¸


We have:

L2
¡
R+  ()

¢
= ⊕   [1]  (2)

where   [1] denotes the subspace of constant functions.

Proof. First, note that if  ∈ , then we have

Z
R+

 ()  ()  = 0.

Let  be any function in L2 (R+  ()). We have the following identity:

 =  +

Z
R+

 ()  ()  with  = −
Z
R+

 ()  () .
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It remains to prove that  ∈ : by construction, we have:Z
R+

 ()  ()  = 0 (3)

Let + =  ( 0) and − =  (− 0). Clearly:  = + − −. Since  is
non-negative by assumption, the previous condition (3) implies that:Z

R+

+ ()  ()  =

Z
R+

− ()  () 

Let:

(1) () =
+ () ()Z

R+

+ ()  () 

; (2) () =
− () ()Z

R+

− ()  () 



Then, we have:

(1) () ≥ 0 (2) () ≥ 0
and Z

R+

(1) ()  =

Z
R+

(2) ()  = 1

Since

 () =

⎛⎝Z
R+

+ ()  () 

⎞⎠ ((1) ()− (2) ())

 ()


it follows that  ∈ . Therefore, since  () =  ()+

Z
R+

 ()  ()  we deduce

that  ∈ +   [1].

Using the fact that  and   [1] are orthogonal in L2 (R+  ()), we
prove the result (2).

We present now our main result.

Theorem 1 The utility invariance condition with respect to the transformation

 is equivalent to the existence of parameters  and  such that:

 () =  () +  (4)

Proof. From (2), we know that for any function  ∈ L2 (R+  ()), there exists
two functions 1 and 2 and two constants  and  such that  = 

(1)−(2)


+,

with  =

Z
R+

 ()  () . Therefore, the invariance condition is equivalent to:
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∀ ∈ L2 (R+  ()), Z
R+

 () ( ()− )  ()  = 0

=⇒Z
R+

 () ( ()− )  ()  = 0.

Finally, this is also equivalent to: ∀ ∈ L2 (R+  ())
Z
R+

⎡⎣ ()− 

Z
R+

 ()  () 

⎤⎦ ()  ()  = 0⇒
Z
R+

⎡⎣ ()− 

Z
R+

 ()  () 

⎤⎦ ()  ()  = 0.
This means that the orthogonal of the subspace spanned by the function  ()−


Z
R+

 ()  ()  is included in the orthogonal of the space spanned by the func-

tion  () − 

Z
R+

 ()  () , ∀. Their biorthogonals satisfy the reverse in-

clusion. Since these subspaces are finite dimensional, they are closed, for the

L2 (R+  ()) topology. Then they are equal to their biorthogonals.

Therefore, the function  () − 

Z
R+

 ()  ()  belongs to the subspace

generated by  () − 

Z
R+

 ()  ()  Consequently, there exists  and 

such that:

 () =  () + 

This theorem shows that, when preferences are invariant with respect to a

specific transformation , the function  =  ◦  is a linear transformation
of the utility  .

We have considered so far a specific transformation . We envisage in the

next section invariance with respect to families of transformations () and

show how preferences can then be elicited.
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3 General properties of the family of transfor-

mations

We have shown in Theorem (1) that if indifference is preserved by the transfor-

mation of the outcomes, then the preference measured by  satisfies:

 () = (()) =  () + 

In some cases discussed in next section (about applications), if we have

noticed that the individual preferences are invariant with respect to a given

family of transformations, then it is possible to elicit () which satisfies the

previous equation.

Theorem (1) however does not provide the construction of the family of

transformations () for which a given utility () is invariant.

A transformation  is specified by the utility () and the parametrized

functions  and  that we refer to as seeds. Assume that  () is strictly

increasing from R+ to R. For  ()   and  given, the transformation is

unique and defined by:

() = −1 [ () + ]  (5)

Invariance with respect to the transformation () (corresponding to , ,

 ()) implies that the preferences of the individual can be rationalized using

the utility function  ().

However, as we show below, it is the case that such utility function is not

unique. Let us examine the problem of uniqueness of the solution. Let us

consider for example the following seeds:  = 1,  = . In this case, the

transformation () satisfies:

() = −1 [ () + ]  (6)

It can be immediately shown that  () is a solution (up to a linear transforma-

tion) of the following problem: find  () such that there exist two parametrized

functions b and b satisfying:
 (()) = b() () + b() (7)

Lemma 1 If the utility function  () is solution of the functional equation (7),

where the transformation is defined by Relation (5), then either  =  , or

 = ([ ]− 1)  for some constant  (up to a linear function).

Proof. From (7), we deduce:

 (−1 [ () + ]) = b() () + b()
Let (0) =  (0) = 0. Then:  (−1 []) = b(). Therefore:

 () = b(()) (8)
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Therefore, we require to identify the function b() (up to a linear function).
Equation (8) implies:

 (−1 [ () + ]) = b( () + )

Therefore: b( () + ) = b()b( ()) + b() (9)

Letting  =  (), we get:

b( + ) = b()b() + b() (10)

Expression (10) implies also

b( + ) = b()b() + b() (11)

Thus, we have: (b() − 1)b() = (b() − 1)b(). Therefore, the function
(b() − 1)b() =  constant and b() = b() + 1. Inserting this expression
in (10) leads to: b( + ) = b() + b() + b()b() (12)

For  = 0, this functional equation has trivial (continuous) solutions which are

the linear functions. In this case, this shows that  () is a linear transformation

of  () as required. We show below that this equation admits a regular function

for  6= 0
From Equation (12), we get:

b( + )− b()


=
b()


h
1 + b()i 

Letting → 0+, we deduce:

b0() = b0(0) h1 + b()i 
The solution of this differential equation is

b() = exp
h
b0(0)i− 

b0(0) 

where  is a constant. Since  (0) = 0, we have:  = 1. Clearly, this function is

a solution of Equation (12).

Consequently, if a utility function  () is solution of the functional equation

(7) where the transformation is defined by Relation (5), then either  =  or

 = ([ ]− 1)  for some non-negative constant  (up to a linear function).

Let us consider now the following seed:  = ,  = 0. In this case, the

transformation e() satisfies:e() = −1 [ ()]  (13)
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Again, it can be shown that  () is a solution (up to a linear transformation)

of the following problem: find  () such that there exist two parametrized

functions e and e satisfying:
 (e()) = e() () + e() (14)

Lemma 2 If a utility function  () is solution of the functional equation (14),

where the transformation is defined by Relation (13), then either  =  or

 =  for some non-negative constant  (up to a linear function).

Proof. From (14), we deduce:

 (−1 [ ()]) = e() () + e() (15)

Let (0) =  (0) = 0. Then e() is equal to 0. We have also:
e() =  (−1 [ (1)])

 (1)


Therefore:
 ()

 (1)
= e ∙()

(1)

¸
 (16)

Let us assume also that (1) =  (1) = 1. Therefore, we require to identify the

function e() (up to a linear function).
Equation (16) implies:

 (−1 [ ()]) = e ( ())  (17)

Thus, from Relations (15) and (17), we get:

e ( ()) = e()e [()]  (18)

Letting  =  (), we get: e () = e()e() (19)

Clearly, a regular function e which is a solution of Equation (19) is a power
function.

From the two previous lemmas, we deduce:

Theorem 2 Suppose that indifference is preserved by the two families of trans-

formations: () = −1 [ () + ] and e() = −1 [ ()]. Then, up to a
linear function, the individual’s utility is unique and given by the function ().

In the next section, we consider standard utility functions. For simple and

usual utility functions, the transformation can be found by simple inspection of

the utility function.
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4 Applications

4.1 The additive characterization

The functional solution for the additive case is given by:

Definition 3 The additive transformation of the lottery  with scale parameter

 is:

+ =
¡
R+ 

¢
 with  () =  (+ ) 

We provide a functional characterization of additive invariance.

Lemma 3 (Additive invariance) Consider two functions  and  defined on

R+ If there exists a twice differentiable solution  of the functional equation

 (+ ) =  () () +  () ∀ ∈ R (20)

then  is given by:

 () =  exp() +  or

 () = + 

with     and  real.

Additive invariant utility functions are characterized by:

Proposition 4 (Additive invariance) If an utility function  () satisfies:

for any different continuous lotteries 1 and 2 the property U (1) = U (2)
implies the additive invariance condition:

U (1) = U (2) ∀ ∈ R+, with 1 6= 2 

Then we have:

 () =  exp() +  or (21)

 () = + 

where     and  are real constants.

Proof. Let  () denote the additive transformation of  () :

 () =  (+ )   ∈ R+
1) From previous Theorem, the additive invariance condition, U (1) = U (2)
⇒ U (1) = U (2) with 1 6= 2 is equivalent to the condition:

∀∃∃ |∀  () =  () +   (22)

2) The proof is now completed since by Lemma (3), we know that the solution

of this functional equation is given by (21).

We now consider the multiplicative case. We consider that we multiply all

rates by the same function, and study under which condition, the choices are

unchanged.
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4.2 The multiplicative characterization

The functional solution for the multiplicative case is given by:

Definition 4 The multiplicative transformation of the lottery  with scale pa-

rameter  is:

+ =
¡
R+ 

¢
 with  () =  () 

We provide a functional characterization of multiplicative invariance.

Lemma 4 (Multiplicative invariance) Consider two functions b and b de-
fined on R+. If there exists a twice differentiable solution  of the functional

equation

 ( ) = b () () + b () ∀ ∈ R+
then  is given by:

() =  +  or (23)

() = + 

where     and  are constant.

The multiplicative invariant utility functions are characterized by:

Proposition 5 (Multiplicative invariance) Consider two different lotter-

ies, 1 and 2 and a utility function  () and assume that U (1) = U (2)
implies the multiplicative invariance condition:

U (1 ) = U (2 ) ∀ ∈ R+, with 1 6= 2 

Then we have

 () =  +  or (24)

 () = + 

with     and  real.

Proof. The proof is similar to the proof in the additive case. Let  () denote

the multiplicative transformation of  () :

 () =  ()  ∈ R+
1) From previous Theorem, the multiplicative invariance condition,

U (1) = U (2)⇒ U (1 ) = U (2 ) 
is equivalent to the condition :

∀∃b∃b ¯̄̄
∀  () = b () + b  (25)

2) To complete the proof, we use Lemma (4), which provides the expression (23)

for the solution to this equation.

Similarly, it is straightforward to find a transformation which keeps invariant

a HARA utility.
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4.3 An example of DARA and IRRA utility

Arrow (1953) advocates that utility should at the same time be DARA (Decreas-

ing Absolute Risk Aversion) and IRRA (Increasing Relative Risk Aversion). The

reasoning for DARA is that, for a given risk, wealthy investors are not more

risk-averse than poorer ones. IRRA implies that when both wealth and risk

increase, then the readiness to bear risk should be reduced. More precisely, for

the previous standard portfolio problem with two assets, if the utility function

 () is twice-differentiable and exhibits DARA and IRRA, then the optimal

proportion of initial wealth invested in the risky asset is increasing with wealth;

but it increases less than proportionally to the increase in wealth.

DARA means:

−”()
 0()

= (); ()  0  0()  0

IRRA implies that () is increasing. A function which satisfies these two

requirements is: () = 
√
 with  ∈ N∗ We can recover the utility function

as:

() = exp(− 
√
)−1( 

√
) (26)

where −1() is a polynomial function of order (− 1)
Using the seed:  = 1,  = , the transformation () is given by

−1 [ () + ] with () defined by (26). Using the seed:  = ,  = 0,

the transformation e() is given by −1 [ ()].
4.4 Kahneman and Tversky specification

Tversky and Kahneman (1992) consider standard weighting transformations, as

in Quiggin (1982): There exists a level ∗ two non-decreasing functions −

and + defined from [0 1] to [0 1], with derivatives −
0
and +

0
such that the

individual maximizes:Z ∗

0

− ()−0[ ()]()+
Z ∞
∗

+ ()+
0
[1−  ()]()

where  denotes the cumulative distribution function associated to the pdf  .

The utility function defined on losses − is convex while the utility function
+ on gains is concave. In that framework, Wakker and Zank (2002) provides

a characterization of CPT and power utility − for losses and another power
utility + for gains. It corresponds to multiplicative invariances. Our approach

allows the elicitation of quite general utility functions. Indeed, the weighting

function  satisfies Assumption (1). We can show that:

Proposition 6 Assumption (1) is satisfied for the weighting transformation of

Quiggin (1982).

Proof. See Appendix.
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Given this result, our methodology can be applied by introducing separate

transformations on losses and gains. The first families of transformations are

applied for outcomes smaller than ∗. It allows the determination of −. Simi-
larly, transformations on outcomes higher than ∗ yield to the characterization
of +.

5 Summary

In this paper, we provide a method to elicit utility functions in the framework

of non-expected utility (RDU, CPT...). We show that one can decide if an

individual preference can be represented by a given utility function by asking a

set of questions involving the comparison between two lotteries. We propose a

method based on an invariance principle to construct such transformed lotteries.

These lotteries involve the same probabilities of occurrence but transform the

initial outcomes. These transformation functions can be inferred from the given

utility function, as illustrated for the standard utility functions (CARA, CRRA)

and also for DARA and IRRA utilities. This approach can be easily applied

empirically. However, it remains to determine what is the accuracy of the result

when the individual responds to a finite set of lottery type questions.
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Appendix

Proof of Proposition 1

For discrete lotteries, Tversky and Kahneman (1992) define the utility as follows.

Consider two non-decreasing functions − and + on [0 1], and utility type

functions − and +. Let  be the lottery {(1 1)  ( )} with 1 

    ∗  +1    . Define Φ
− and Φ+ by: Φ−1 = −(1) and

Φ+ = +() and set:

Φ− = −
³P

=1 

´
− −

³P−1
=1 

´
∀ ∈ {2 } 

Φ+ = +
³P

= 

´
− +

³P
=+1 

´
∀ ∈ {+ 1  } 

(27)

Then, the utility  on lottery  is given by:  () =  −() +  +() with

 −() =
X
=1

−()Φ− and  +() =

X
=+1

+()Φ
+
  (28)

Assume now that the probability distribution  has a pdf  , and the functions

− and + have derivatives −
0
and +

0
. Consider for instance a continuous

distribution with a cdf  and a non-negative pdf  on its range ( ). If ( )

is a bounded interval, introduce the sequence of discrete lotteries with out-

comes  = ( − )(), for  ∈ N∗  ∈ {1  } and P[] =  () −
 (−1). If the range is equal to [+∞[, consider the sequence of discrete
lotteries with outcomes  = ++), for  ∈ N  ∈ N∗  ∈ {1  }
and P[] =  ()−  (−1).
Then, the sequence of probability distributions (P) weakly converges to

the probability distribution with cdf  . Using standard Taylors’expansions of

−, +and  , we deduce the convergence of  − () defined by:

 − () =
X

≤∗
−()

£
− ( ())− − ( (−1))

¤
to
R ∗


− ()−0[ ()]() and also the convergence of  +
 () defined by:

 +
 () =

X
∗

+()
£
+ (1−  (−1))− + (1−  ())

¤
to
R +∞
∗ + ()+

0
[1− ()]() The same results hold for the non-bounded

range case.

Therefore, we get the continuous version of the CPT:

 () =

Z ∗



− ()−0[ ()]()+
Z ∞
∗

+ ()+
0
[1−  ()]()
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Proof of Proposition 2

Without loss of generality, we can assume that the utility function  () is in the

Hilbert space L2 (R  ()) with  () =  () , where  () is non-negative

and Z
R+

 ()  = 1

Let  () be a solution of the problem. Let be a non-negative real number.

Consider the following function  defined by:

() =

µ
1

2()
{|()|≥} + {|()|}

¶
exp

£−2¤ 
Clearly,  () is non-negative and

Z
R+

 ()  is a finite number that we denote

by . Define the function  by setting:

() = ()

Then  () is non-negative and

Z
R+

 ()  = 1

Additionally, Z
R+

2() ()  =

(1)

⎡⎢⎣ Z
{|()|≥}

exp
£−2¤ + Z

{|()|}

2() exp
£−2¤ 

⎤⎥⎦ 
Therefore,

Z
R+

2() ()  is finite.

Note that our method to elicit the utility function does not require the

knowledge of the function , since this latter one is not involved in Relation (4)

of Theorem 1.
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Proof of Lemma 3

1) Characterization of the function  ().

By differentiating Equation (20) with respect to , we deduce

0 (+ ) =  ()0 () and 0 (+ ) =  ()0 () 

Therefore:  () 0() = , where  is a constant.

2) Characterization of the function 0 ().

We have:

0 (+ ) 0 () =  () and  () = 0()

Then:

0 (+ ) = 0 ()0()

If 0 (0) = 0, then 0 () = 0, ∀, and  () =  (constant). If 0 (0) 6= 0 then
 = 10 (0). In this case:

0 (+ ) = [0 () 0 (0)]0 ()  (29)

3) Solution of Equation (29) with 0 (0) 6= 0.
From this equation, we deduce that

[0 (+ )−0 ()]  = [0 ()−0 (0)] × [0 () 0 (0)] 

Taking the limit → 0, we get

00 () = 0 () [00 (0) 0 (0)] 

Thus, either 00 (0) = 0, then 00 () = 0 which implies  () =  + , or

00 (0) 6= 0, and the solution of this standard differential equation is

 () =  exp() + 
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Proof of Lemma 4

1) Characterization of the function b ().
By differentiating Equation (23) with respect to , we deduce

 0 ( ) = b () 0 () and  0 ( ) = b () 0 () 

Therefore: b ()  ( 0()) = , where  is a constant.

2) Characterization of the function  0 ().

We have:

 0 ( ) = b () 0 () and b () =  0()

Then

 0 ( ) =  0() 0 () 

If  0 (1) = 0, then  0 () = 0, ∀, and  () =  (constant). If  0 (1) 6= 0 then
 = 1 0 (1). In this case:

 0 () = [ 0() 0 (1)] 0 ()  (30)

3) Solution of Equation (30) with  0 (1) 6= 0.
From this equation, we deduce that

[ 0 ( )− 0 ()]  ( [− 1])

= [ 0 ()− 0 (1)]  [− 1]× [ 0 ()  ( 0 (1))] 

Taking the limit → 1, we get  00 () = [ 0 () ]× [ 00 (1)  0 (1)]. Either
 00 (1) = 0, then  00 () = 0 which implies  () =  + ., or  00 (1) 6= 1,

and the solution of the differential equation  00 () = [ 0 () ]× (constant) is
 () =  + .

22



Proof of Proposition 6

In what follows, we consider standard weighting transformations, as in Quiggin

(1982).

Examine for example the probability weighting for the cumulative prospect

theory. Denote by  the cumulative distribution function associated to  . There

exists a level ∗ two non-decreasing functions − and + defined from [0 1] to

[0 1], with derivatives −
0
and +

0
such that the individual maximises:Z ∗

0

 ()−0[ ()]()+
Z ∞
∗

 ()+
0
[1−  ()]()

As introduced in Quiggin (1982), both functions − and + can be chosen

as follows:

() =


( + (1− ))
1




with for example − = 0 69 and + = 0 61

Then, the functional () is defined by:

()() = ()

h
−

0
[ ()]1≤∗ + +

0
[1−  ()]1∗

i
[−[ (∗)] + +[1−  (∗)]]

 (31)

It satisfies Assumption (1): First, () is actually a pdf. Second, the func-

tional () is surjective. Indeed, for any given pdf e , consider the associated
cumulative distribution function e . For a given non-negative parameter , con-
sider the function  which satisfies:

 () =
¡
−
¢−1

[ e ()] for  ≤ ∗,

and

 () = 1− ¡+¢−1 ³[1− e ()]´ for   ∗

where (−)−1 and (−)−1respectively denote the inverse of the functions
− and +

We choose  (∗) such that, for  = −[ (∗)] + +[1−  (∗)], we have:¡
−
¢−1

[ e (∗)] + ¡+¢−1 ³[1− e (∗)]´ = 1
From the properties of the functions − and +, it is easy to check that the

function  is a differentiable cdf. Denote  its derivative. From Equation (31),

we deduce that () = e . Therefore, () is surjective.
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