
 

 
THE BASIC APPROVAL VOTING GAME 

 
 
 
 
 

Jean-François LASLIER 
Remzi SANVER 

 

 
January 2010 

 
 
 
 

Cahier n° 2010-01 
 

 
 

 

                              ECOLE POLYTECHNIQUE                      
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

DEPARTEMENT D'ECONOMIE 
Route de Saclay 

91128 PALAISEAU CEDEX 
(33) 1 69333033 

http://www.enseignement.polytechnique.fr/economie/  
mailto:chantal.poujouly@polytechnique.edu 

 
 



The Basic Approval Voting Game

Jean-François Laslier
École Polytechnique, Palaiseau, France

M. Remzi Sanver
Istanbul Bilgi University, Turkey

January 5, 2010

Abstract

We survey results about Approval Voting obtained within the stan-
dard framework of game theory. Restricting the set of strategies to
undominated and sincere ballots does not help to predict Approval
Voting outcomes, which is also the case under strategic equilibrium
concepts such as Nash equilibrium and its usual re�nements. Strong
Nash equilibrium in general does not exist but predicts the election of
a Condorcet winner when one exists.

1 Introduction

There is a vast literature which conceives Approval Voting as a mechanism
where the approval of voters is a mere strategic action with no intrinsic
meaning. As usual, a group of voters who have preferences over a set can-
didates is considered. Every voter announces the list of candidates which
he approves of and the winners are the candidates which receive the highest
number of approvals. Assuming that voters take simultaneous and strategic
actions, we are confronted to a normal form game whose analysis dates back
to Brams and Fishburn (1983). This chapter surveys the main results of
this literature.

The problem with this approach is that the main conceptual tool of game
theory � Nash equilibrium � is of little help for understanding Approval
Voting and most voting rules. By de�nition, an equilibrium is a vote pro�le
in which no voter can, by changing her vote only, change the outcome of
the game in such a way that the new outcome is strictly better for her. In a
world where voters are only interested in who wins the election (instrumental
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and consequentialist voting, opposed to expressive voting), the outcome of
the game is just the identity of the elected candidate, or candidates in case
of a tie. Then it is almost always the case that no voter can, by changing
her vote only, change the outcome of the game. With Approval Voting, as
well as with most voting rules, this will happen as soon as one candidate
is winning the election with a margin of more than two votes. Therefore,
apart cases where several candidates tie or almost tie, almost everything is
a Nash equilibrium. In particular, except in some very degenerated cases,
any candidate is winning at some Nash equilibrium.

The game-theoretical literature on voting, and in particular on Approval
Voting, has therefore focused on the possibility of using more powerful tools
than Nash equilibrium in order either to predict the outcome of a voting
game or at least to narrow down the set of possible outcomes. To this aim,
several routes have been followed.

The �rst route is to restrict the set of voting strategies that a voter is
supposed to possibly use. The natural idea, from the game theoretic perspec-
tive, is to suppose that voters do not use dominated strategies. Although
this idea reveals very powerful in solving sequential voting games (Farquhar-
son (1969), Moulin (1979, 1983), Banks (1985), Bag et al. (2009)), this is
not the case for simultaneous voting games de�ned by the usual voting rules
(Dhillon and Lockwood (2004), Buenrostro and Dhillon (2003), Dellis and
Oak (2007)). For Approval Voting, undominated strategies are often called
�admissible strategies� and can be characterized: If the voter�s preference
is strict, she approves her preferred candidate, she does not approve her
worse candidate, and no constraint is imposed as to the other, intermediate
candidates. (For a precise statement, see Proposition 1). For Approval Vot-
ing, another meaningful restriction on the set of strategies is the sincerity
requirement, which imposes that when the voter approves a candidate, she
also approves all the candidates she strictly to prefers to this one. Brams and
Sanver (2006) have described the set of possible outcomes when voters use
only undominated (�admissible�) and sincere strategies. It turns out that,
except in some degenerated situations, all candidates pass this test. (See
section 4.1 of this chapter.)

The second route is to come back to a notion of equilibrium and to re-
�ne the notion of Nash equilibrium according to the usual concepts of game
theory. (See Myerson (1991) or Van Damme (1991) for the general theory
and De Sinopoli (2000) for an application to plurality voting.) In compari-
son with the previous approach, this amounts to give up the idea that the
voter�s behavior can be restricted a priori and to instead consider that each
voter is reacting to what she believes are the voting intentions of the other
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voters. Remark that among the plethora of Nash equilibria of the voting
games, most of them are degenerated from the strategic point of view in
the sense that no player has any incentive not to deviate. In fact, unless
she is �pivotal�, the voter�s choice has indeed no consequence at all on the
outcome. This is a clear case for the re�nement of equilibrium. One could
hope that statements of the kind �A Condorcet loser cannot be elected at
equilibrium under Approval Voting� or �Voters vote sincerely at equilib-
rium under Approval Voting� could be demonstrated when the notion of
equilibrium is properly de�ned. This hope is justi�ed if one allows not only
for individual deviations but also for group deviations � hence considers
strong equilibrium as the game-theoretic solution concept. (See Proposi-
tion 4. about Condorcet-consistency.) But the notion of strong equilibrium
has a major drawback as a predictive tool since, in many cases, there is
no such equilibrium. On the other hand, for di¤erent re�nements of Nash
equilibrium that yield non-empty predictions in �nite normal-form games,
De Sinopoli, Dutta and Laslier (2006) have provided counter-examples (re-
produced in section 4.2) that kill the hope to make these statements true
for any of the classical re�nements of Nash equilibrium through concepts
such as �perfection�, �properness�or �stability�.

The third route is to re�ne the concept of equilibrium following non-
standard ideas that would be speci�c to the voting context. In politics,
voting situations often involves large number of players, a fact that raises
new di¢ culties but also new possibilities. This avenue, pioneered by Myerson
and Weber (1993) and Myerson (2002) is the object of the survey of Nunez
(2010) and is out of the scope of the present chapter.

Section 2 presents the basic notation and concepts. Section 3 deals
with undominated and sincere individual strategies. Section 4 deals with
the aggregate outcome of the vote. Section 5 concludes.

2 The normal form game

We denote by I the �nite set voters (sometime called individuals or players)
and by X the �nite set of candidates (sometimes called alternatives). We
assume #I � 2 and #X � 2. Every voter i has a preference over X,
expressed by a utility function ui : X �! IR. So given two candidates
x; y 2 X, voter i �nds x at least as good as y i¤ ui(x) � ui(y). A candidate
x is high in ui i¤ ui(x) � ui(y) for all y 2 X: We say that x is low in ui i¤
ui(y) � ui(x) for all y 2 X: We call ui null whenever i is indi¤erent among
all alternatives, i.e., ui(x) � ui(y) for every x; y 2 X. If ui is null then every
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candidate is both low and high in ui. If ui is not null then the candidates
which are high in ui and those which are low in ui form disjoint sets.

A ballot is any subset of the set of candidates; we denote by 2X the set of
ballots. When voter i casts ballot Bi, we say that i approves the candidates
in Bi. We let B = (Bi)i2I 2

�
2X
�I
stand for a ballot pro�le and write

B = (Bi; B�i) with B�i = (Bj)j2Infig, whenever we wish to highlight the
dependency of B with respect to i�s ballot. We refer to B�i as a ballot pro�le
without i.

Given a ballot pro�le B, the score of candidate x is

s(x;B) = #fi 2 I : x 2 Big

and the (non-empty) set of winning candidates (under Approval Voting) is

W (B) = fx 2 X : s(x;B) � s(y;B)8y 2 Xg:

Similarly, we write s(x;B�i) = #fj 2 Infig : x 2 Bjg.
We suppose that voters vote simultaneously by casting a ballot which

is some set of candidates while Approval Voting is used as the outcome
function. So we consider a normal form game where the strategy set for any
voter i is the set 2X of possible ballots. Hence a ballot pro�le B is also a
strategy pro�le and the outcome is the set of winning candidates W (B).

As W (B) may contain more than one candidate, our strategic analysis
requires the knowledge of voters�preferences over non-empty subsets of X.
We assume that ties over outcomes are broken by fair lotteries and that
voters evaluate outcomes by expected Von-Neumann Morgenstern utilities.
So the utility that voter i attaches to a set S of winning candidates is

ui(S) =
1

#S

X
x2S

ui(x):

Note that we abuse notation and allow ui to have arguments which are both
elements and non-empty subsets of X.

3 Admissibility and sincerity

3.1 Admissible strategies

Following the game-theoretical vocabulary, for any voter i with preference
ui, we say that the ballot Bi (weakly) dominates the ballot B0i if and only
if ui(W (Bi; B�i)) � ui (W (B

0
i; B�i)) for all B�i and ui(W (Bi; B�i)) > ui
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(W (B0i; B�i)) for some B�i. A ballot is undominated if and only if it is
dominated by no ballot. Following Brams and Fishburn (1983), we qual-
ify undominated ballots as admissible and use either words. The following
proposition characterizes admissible ballots.

Proposition 1 (i) If ui is null then all ballots are admissible for voter i.
(ii) Let the number of voters be at least three. If ui is not null then the

ballot Bi is admissible for voter i if and only if Bi contains every candidate
who is high in ui and no candidate who is low in ui.

Proof. (i) directly follows from the de�nitions. To show the �only if�
part of (ii), consider a ballot Bi which fails to contain a candidate y who is
high in ui. Let B0i = Bi [ fyg. We will prove that B0i dominates Bi.

Given any B�i, all candidates except y have the same score at (Bi;B�i)
and (B0i;B�i) while the score of y is raised by one unit at the latter ballot
pro�le. Therefore, regarding the sets of winning candidates Y =W (Bi;B�i)
and Y 0 =W (B0i;B�i), the following three cases are exhaustive:

1. y =2 Y and Y 0 = Y ;

2. y =2 Y and Y 0 = Y [ fyg;

3. y 2 Y and Y 0 = fyg.

In all three cases, ui(Y 0) � ui(Y ). Now �x some k 2 Infig and consider
B�i where Bj = ; for all j 2 Infi; kg and Bk = fzg for some candidate z who
is not high in ui. If z =2 Bi then W (Bi;B�i) = Bi [ fzg and W (B0i;B�i) =
B0i [ fzg = Bi [ fy; zg, hence ui(W (B0i;B�i)) > ui(W (Bi;B�i)). If z 2 Bi,
thenW (Bi;B�i) = fzg,W (B0i;B�i) = fy; zg and we have ui(W (B0i;B�i)) >
ui(W (Bi;B�i)). This proves that B0i dominates Bi, and we conclude that an
undominated ballot must contain all candidates who are high in ui. Similar
arguments show that an undominated ballot cannot contain a candidate who
is low in ui.

We now show the �if� part of (ii). Consider a ballot Bi that contains
every candidate high in ui and no candidate low in ui. In order to show
that Bi is undominated, we consider any distinct ballot B0i and establish the
existence of some B�i where ui(W (Bi;B�i)) > ui(W (B0i;B�i)).

First let B0i contain a candidate y who is low in ui. Let B�i be such that
Bj = fyg for some voter j 2 Infig and Bk = ; for every voter k 2 Infi; jg.
So W (Bi;B�i) = Bi [ fyg, W (B0i;B�i) = fyg and ui(W (Bi;B�i)) >
ui(W (B

0
i;B�i)).
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Now let B0i fail to contain all candidates high in ui. So the set Y of
candidates in BinB0i who are high in ui is non-empty. Let L be the set
of candidates who are low in ui. Let B�i be such that Bj = Y [ L
for some voter j 2 Infig and Bk = ; for every voter k 2 Infi; jg. So
W (Bi;B�i) = Y and at (B0i;B�i), the score of every candidate who is high
in ui is at most one and the score of some candidates who are low in ui is
one. Thus, W (B0i;B�i) contains candidates who are not high in ui. Hence
ui(W (Bi;B�i)) > ui(W (B0i;B�i)).

Finally let B0i contain every candidate who is high in ui and no candidate
which is low in ui. First consider the case where there exists a candidate
y in Bi not in B0i. Let B�i be such that for two (distinct) voters j; k 2
Infig we have Bj = Bk = fy; zg where z is low in ui and Bl = ; for
every voter l 2 Infi; j; kg. So W (Bi;B�i) = fyg, W (B0i;B�i) = fy; zg and
ui(W (Bi;B�i)) > ui(W (B

0
i;B�i)). Now consider the case where Bi is a

proper subset of B0i. Take some y 2 B0i n Bi. Note that y is not high in ui.
Take some candidate z which is high in ui and let B�i be such that for
two (distinct) voters j; k 2 Infig we have Bj = Bk = fy; zg and Bl = ; for
every voter l 2 Infi; j; kg. So W (Bi;B�i) = fy; zg, W (B0i;B�i) = fyg and
ui(W (Bi;B�i)) > ui(W (B0i;B�i)).

3.2 Sincerity

Following Brams and Fishburn (1983), a strategy (or ballot) Bi of voter i
with preference Pi is said to be sincere i¤ for all candidates x, y 2 X;

y 2 Bi and ui(x) > ui(y)) x 2 Bi:

So under a sincere strategy Bi, if i approves of a candidate y then she
also approves of any candidate x which she strictly prefers to y. With K
candidates, if voter i is never indi¤erent between two distinct candidates,
she has at her disposal K + 1 sincere strategies, including the full ballot
Bi = X which consists of approving of all candidates, and the empty ballot
Bi = ; which consists of approving of none.

Proposition 1 does not make any statement about candidates which are
neither high nor low. In fact, for a voter i with preference ui, every non-
sincere ballot which contains every candidate which is high in ui and no
candidate which is low in ui. is an undominated strategy for i. So admissible
ballots need not be sincere, nor sincere ballots have to be admissible.1 On

1Nevertheless, if there are precisely three candidates, then every admissible ballot is
sincere.
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the other hand, sincere and non-sincere ballots can be discriminated through
the fact that every ballot pro�le B�i without i admits at least one sincere
ballot Bi as a best-response of i. In other words, the set of best responses
of i to B�i cannot consist of insincere ballots only.

Proposition 2 Given any voter i with preference ui and any ballot pro�le
B�i without i, there exists a sincere ballot Bi 2 2X such that ui(W (Bi;B�i)) �
ui(W (B

0
i;B�i)) for every ballot B

0
i 2 2X.

Proof. Take any voter i with preference ui and any ballot pro�le B�i
without i. Let Y be the (non-empty) set of candidates which receive the
highest number of approvals at B�i. Let Z be the (possibly empty) set of
candidates who receive at B�i precisely one approval less than the highest
number of approvals. The outcome set W (Bi; B�i) when Bi vary can take
two forms: if Bi\Y 6= ;, then W (Bi; B�i) = Bi\Y , and if Bi\Y = ;, then
W (Bi; B�i) = Y [ Z 0, for Z 0 = Bi \ Z. Denote by u�i the maximum utility
obtained by i. Then u�i � maxy2Y ui(y), and u�i � maxZ0�Z ui(Y [ Z 0),
with one of these two inequalities being an equality. Let y� 2 Y be such
that ui(y�) = maxy2Y ui(y). Let B1i = fx 2 X : ui(x) � ui(y�)g. This is a
sincere ballot, so if B1i is a best reponse, we are done.

Notice that B1i brings at least the level of utility ui(y
�); so if B1i is a

not best reponse, it must be the case that ui(y�) < u�i and that u
�
i =

maxZ0�Z ui(Y [ Z 0): In that case, let Z� = fz 2 Z : ui(z) � ui(Y )g.
Recall that the utility for a subset is the average utility of its elements;
as one can easily check, it follows that ui(Y [ Z�) = maxZ0�Z ui(Y [ Z 0).
Let B2i = fx 2 X : ui(x) � ui(Y [ Z�)g This is again a sincere ballot.
Moreover, in that case, B2i \ Y = ; so that the ballot B2i brings the utility
ui(Y [ (B2i \ Z)). Here, B2i \ Z = fz 2 Z : ui(z) � ui(Y [ Z�)g and
ui(z) � ui(Y [ Z�) if and only if ui(z) � ui(Y ), so that B2i \ Z = Z�, and
B2i brings the maximal utility u

�
i . We again found a sincere best response.

Proposition 1 slighty di¤ers from the existing results of the literature
regarding the way preferences over sets.are handled. In fact, it makes the
same statement as Corollary 2.1 in Brams and Fishburn (2007) which is
shown under more general assumptions for extending preferences over sets.
On the other hand, the result announced by Proposition 2 has no analogous
in Brams and Fishburn (1983, 2007)), as it fails to hold under these more
general assumptions.2.

2To see this, let voter i have the preference ui(x1) > ui(x2) > ui(x3) > ui(x4) > ui(x)
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Proposition 2 has no analogous for insincere ballots. In other words, the
best response of i to B�i can consist of sincere ballots only.3 As a result,
one may be tempted to assume � as we do in Section 4.1 � that voters
restrict their strategies to those which are admissible and insincere. On the
other hand, in Section 4.2, we see that such an assumption is not totally
innocuous.

4 Approval Voting outcomes

4.1 Admissible and sincere outcomes

Brams and Sanver (2006) study the set of candidates which are chosen un-
der Approval Voting at a given preference pro�le, assuming that voters use
admissible and sincere strategies. For a formal expression of their �ndings,
let u = (ui)i2I be a preference pro�le. Write

�(u) =
n
B 2

�
2X
�I
: 8 i 2 I; Bi is admissible and sincere with respect to ui

o
:

We de�ne

AV (u) = fx 2 X : x 2W (B) for some B 2 �(u)g

as the set of (admissible and sincere) Approval Voting outcomes at u. So
candidate x is an Approval Voting outcome at u if and only if there exists
a pro�le of sincere and admissible strategies B where x is a (possibly tied)
winning candidate under Approval Voting.

Note that a voter who strictly ranks K candidates has exactly K � 1
admissible and sincere strategies which consist of approving her �rst k 2
f1; :::;K�1g best candidates. This is a drastic reduction of a voter�s strategy
space which originally contained 2K strategies. Nevertheless, this does not
restrict much the size of AV (u) which Brams and Sanver (2006) characterize,
assuming that voters are never indi¤erent between any two candidates, i.e.,
ui(x) 6= ui(y) 8i 2 I;8x; y2 X.
8x 2 Xnfx1; x2; x3; x4g and let B�i be such that s(x2;B�i) = s(x4;B�i) > s(x1;B�i) =
s(x3;B�i) > s(x;B�i)8x 2 Xnfx1; x2; x3; x4g while s(x2;B�i) � s(x1;B�i) = 1: The
ballot Bi = fx1; x3g which yields fx1; x2; x3; x4g can be a best-response under the Brams
and Fishburn (1983, 2007) assumptions while there is no sincere ballot for voter i which
yields the same outcome. Endriss (2009) identi�es the assumptions on preferences over
sets which rule out incentives to vote insincerely.

3Consider four voters and four candidates where each of voters 2, 3 and 4 approve of
precisely one candidate; say x, y and z respectively. Let the fourth candidate w be ranked
last in the preference of voter 1 whose unique admissible best response is to approve of
the candidate he prefers the most.
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Proposition 3 Given a preference pro�le u with no indi¤erences, a candi-
date x is not in AV (u) if and only if there exists a candidate y 2 Xnfxg
such that according to u, the number of voters who rank y as the best and x
as the worst candidate exceeds the number of voters who prefer x to y.

Based on Proposition 3, AV (u) may contain Pareto dominated alter-
natives4 as well as Condorcet losers. Moreover, at every preference pro�le
u, a Condorcet winner (whenever it exists); all scoring rule outcomes; the
Majoritarian Compromise winner; the Single Transferable Vote winner are
always in AV (u). We refer the reader to Brams and Sanver (2006) for a
more detailed and formal expression of these results. Nevertheless, we can
right away conclude that, in our game theoretic framework, assuming that
voters restrict their strategies to those which are admissible and sincere does
not su¢ ce to have a �ne prediction of the election result under Approval
Voting.

4.2 Equilibrium outcomes

The model can be more predictive, when admissible and sincere strategy
pro�les are required to pass certain stability tests. A pro�le of sincere and
admissible strategies B is strongly stable at preference pro�le u i¤ given any
other pro�le of admissible and sincere strategies B0, there exists a voter i
with Bi 6= B0i while ui(W (B)) � ui(W (B

0)). So B is strongly stable at u
i¤ there exists no coalition of voters whose members can all be better-o¤ by
switching their strategies to another admissible and sincere one (which may
di¤er among the members of the coalition). Let AV �(u) = fx 2 X : x 2
W (B) for some B 2 �(u) which is strongly stableg be the set of strongly
stable AV outcomes at u. Clearly, AV �(u) re�nes AV (u) and the reduction
is indeed dramatic:

Proposition 4 Given a preference pro�le u, a candidate x is strongly stable
at u if and only if x is a weak Condorcet winner at u.

Note that the de�nition of a Condorcet winner is a weak one: x is a
weak Condorcet winner at u i¤ given any other candidate y, the number
of voters who prefer x to y is at least as much as the number of voters
who prefer y to x. So, in some cases, u may admit more than one weak
Condorcet winner. Of course, u may admit no weak Condorcet winner,

4 In the environment we consider, if a Pareto dominates b and b 2 AV (u), then a 2
AV (u) as well.
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hence no strongly stable pro�le of admissible and sincere strategies. This
last observation is not surprising, as strong stability � which corresponds to
strong Nash equilibrium � is a rather demanding condition. The interested
reader can see Sertel and Sanver (2004) for a more general treatment of
strong equilibrium outcomes of voting games.

The complete proof of Proposition 4 can be found in Brams and Sanver
(2006). However, we wish to give a simple and instructive description of
the proof. If an outcome x is not a weak Condorcet winner, it means that
there exists another outcome y which is prefered to x by some majoritarian
coalition of voters which can block any strategy pro�le which yields x as
the Approval Voting outcome. If x is a weak Condorcet winner, then no
coalition can block the strategy pro�le where voters for whom x is not low
approve x but do not approve anything below x and voters for whom x is
low approve only their high candidate.5

We now present two results from de Sinopoli et al. (2006) which advise
caution in interpreting Proposition 4 and Proposition 2.

1. There may exist non-trivial equilibria where a Condorcet winner ob-
tains no vote;

2. There may exist non-trivial equilibria with some voters voting non-
sincerely.

Example 5 (Condorcet in-consistency) There are four candidates: X =
fa; b; c; dg and three voters f1; 2; 3g with utility:

u1(a) = 10; u1(b) = 0; u1(c) = 1; u1(d) = 3;

u2(a) = 0; u2(b) = 10; u2(c) = 1; u2(d) = 3;

u3(a) = 1; u3(b) = 0; u3(c) = 10; u3(d) = 3:

Candidate d is the Condorcet winner of this utility pro�le. Consider the
following strategy pro�le:

� voter 1 votes fag;

� voter 2 votes fbg;

� voter 3 votes fcg.
5We take the occasion to claim that Proposition 4 remains valid when strong stability

is further strengthened so as to allow non-admissible and non-sincere strategies.
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In such a situation there is a tie among the candidates a, b, and c, so that
the payo¤ to each player is 11=3. Starting from this situation each player
is playing a unique best response: any other choice would lead to a strictly
lower payo¤. In this strict equilibrium, the Condorcet winner receives no
vote.

The question of sincerity is raised by considering the possibility that
players use mixed strategies. A mixed strategy is a probability distribution
over the set of pure strategies. Here the set of mixed strategies is thus the
simplex �(2X) with 2K vertices, that is an a¢ ne space of dimension 2K�1.
We denote by

�i 2 �(2X)
a mixed strategy of voter i and by ��i a pro�le of mixed strategies for the
other voters. Payo¤s are de�ned in the usual ways as expected values. For a
mixed strategy pro�le �, �(B) is the probability of the pure-strategy pro�le
B under �. Players are supposed to randomize independently the ones from
the others so that;

�(B) =
Y
i2I
�i(Bi)

and

ui(�) =
X

B2(2X)I
ui(B)�(B) =

X
B2(2X)I

1

#W (B)

X
x2W (B)

ui(x)�(B).

Example 6 (A non-sincere equilibrium) There are four candidates: X =
fa; b; c; dg and three voters f1; 2; 3g with utility:

u1(a) = 1000; u1(b) = 867; u1(c) = 866; u1(d) = 0;

u2(a) = 115; u2(b) = 1000; u2(c) = 0; u2(d) = 35;

u3(a) = 0; u3(b) = 35; u3(c) = 115; u3(d) = 1000:

Candidate d is the Condorcet winner of this utility pro�le. Consider the
following strategy pro�le:

� voter 1 votes fa; cg;

� voter 2 votes fbg with probability 1/4 and fa; bg with probability 3/4.

� voter 3 votes fdg with probability 1/4 and fc; dg with probability 3/4.

Note that voter 1 is not voting sincerely. Nevertheless, this strategy pro�le
is an equilibrium and De Sinopoli et al (2006) show that it forms a singleton-
stable set, an important re�nement of Nash equilibrium.
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5 Conclusion

The analysis above raises three issues:

� An a priori restriction of voters�strategies based on a reasonable in-
tuition such as undominated and sincere voting is not su¢ cient to
restrict the set of possible outcomes of an Approval Voting election.

� Many re�nements of Nash equilibrium, when applied to Approval Vot-
ing games, ensure the existence of equilibrium but the outcome of these
equilibria do not seem to behave particularly well with respect to social
choice requirements.

� Strong Nash equilibrium predicts Condorcet winners as the only Ap-
proval Voting outcomes but equilibrium fails to exist when there is no
Condorcet winner.

These essentially negative theoretical results call for developing a �ner
understanding of how a voter chooses a ballot under Approval Voting. This
analysis could rely on some general, game-theoretic principles such as the
ones just described, but should probably also embody some elements speci�c
to real voting situations such as the large size of the electorate, the speci�c
structures of Approval Voting strategies, or the speci�cities of political in-
formation.
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