Intense Lasers Simulation of
Quantum Cosmology & Gravity

Sang Pyo Kim
Kunsan Nat’l Univ & CoReLS/IBS
IZEST, Embassy of Romania in Paris
September 17-19, 2014
Overview of Strong Field Physics

<table>
<thead>
<tr>
<th>QED</th>
<th>QFT in Curved Spacetime</th>
<th>Quantum Cosmology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(gauge) 4-vector potential</td>
<td>Curved spacetimes</td>
<td>Superspace of geometry and matters</td>
</tr>
<tr>
<td>Charged fields in Minkowski spacetimes</td>
<td>Neutral /charged fields in curved spacetimes</td>
<td>Wave functions of the universe in superspace</td>
</tr>
<tr>
<td>Dirac/Klein-Gordon equation</td>
<td>Klein-Gordon/Dirac/graviton equation</td>
<td>Wheeler-DeWitt equation</td>
</tr>
<tr>
<td>Vacuum polarization</td>
<td>Hawking radiation</td>
<td>Creation of universes</td>
</tr>
<tr>
<td>Schwinger mechanism</td>
<td>Cosmic radiation</td>
<td>Structure of spacetime</td>
</tr>
</tbody>
</table>
Unified Picture for Pair Production
[SPK, JHEP11('07)]

Vacuum Fluctuations/Unruh Effects

Schwinger Mechanism/Polarization

QED
 - Condensed Matter Analogues
 - Black Holes
 - Black Hole Analogues

Hawking Radiation
<table>
<thead>
<tr>
<th>Weak QED</th>
<th>Strong QED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pauli Hamiltonian</td>
<td>Second quantized field Hamiltonian</td>
</tr>
<tr>
<td>Schrödinger equation</td>
<td>Functional Schrödinger equation</td>
</tr>
<tr>
<td>Paul traps in weak EM fields</td>
<td>Charged fields in strong (relativistic) EM fields</td>
</tr>
</tbody>
</table>
Simulating Quantum Effects in Cosmology via Ion Traps?
Simulating Gibbons-Hawking Effect

[Menicucci, Olson, Milburn, New J. Phys. 12 (‘10)]

- An ion trap experiment is proposed as the analogue of quantum effects in an expanding universe, such as Gibbons-Hawking effect, inflationary structure, etc.

\[ds^2 = -dt^2 + a^2(t) d\vec{x}^2 \]

- An Unruh-DeWitt detector in a FRW universe

\[H_{\text{int}} = f(t)m(t)\phi(t, \vec{x}) \]

- A homogeneous, isotropic field \(\Phi \) has the Hamiltonian of time-dependent oscillators

\[H(t) = \frac{1}{2} \sum_k \frac{\pi_k^2}{a^{3/2}(t)} + a^{3/2}(t) \omega_k^2(t) \phi_k^2 \]
Paul Trap

- Nonrelativistic quantum motion of a charged particle in an rf trap with an electric potential (quantum theory)
 \[\Phi = \frac{U}{2} \left(\alpha x^2 + \beta y^2 + \gamma z^2 \right) + \frac{\bar{U}}{2} \cos(\omega_{rf} t) \left(\alpha' x^2 + \beta' y^2 + \gamma' z^2 \right) \]

- Maxwell equation at each moment (dynamical trapping)
 \[\Delta \Phi = 0 \Rightarrow \begin{cases} \alpha + \beta + \gamma = 0 \\ \alpha' + \beta' + \gamma' = 0 \end{cases} \]

Schematic drawing of the electrodes for a cylindrically symmetric 3D rf trap.

\[r_0 \cong \sqrt{2}z_0 = 100 \mu m \sim 1 \text{cm}, \ \bar{U} = 100 \sim 500 \text{V}, \ U = 0 \sim 50 \text{V}, \ \omega/2\pi = 100 \text{kHz} \sim 100 \text{MHz} \]

[Leibfried et al, Rev. Mod. Phys. 75 (‘03)]
QED in Ultra-Strong, Time-Dependent Magnetic Fields
Sources for Strong EM Fields

Neutron Stars & Magnetars

IZEST
Extreme Light Road Map

Schwinger Limit

[Harding and Lai, Rep. Prog. Phys. 69 ('06)]

[Homma, Habs, Mourou, Ruhl and Tajima, PTP Suppl. 193 ('12)]
Scalar QED in $B(t)$

- A homogeneous, time-dependent, magnetic field $B(t)$ and an induced electric field with the vector potential

$$\vec{A}(t, \vec{r}) = \frac{1}{2} \vec{B}(t) \times \vec{r}$$

- How to find the Landau levels and the QED effective action?
 - The first quantized theory: the Klein-Gordon equation
 - The second quantized theory: the Hamiltonian from field action

- The dynamically coupled Landau levels continuously make transitions among themselves, and the 1st or 2nd quantized theory is similar to a relativistic theory of time-dependent, coupled oscillators coupled to each other.
1st Quantized Formulation

- The two-component, first order wave function of the KG eq expanded by Landau states [SPK, Ann Phys 344 (‘14)]

\[
\begin{pmatrix}
\Psi(t, \bar{x}_\perp) \\
\partial \Psi(t, \bar{x}_\perp) / \partial t
\end{pmatrix} = \begin{pmatrix}
\Phi^T(t, \bar{x}_\perp) & 0 \\
0 & \Phi^T(t, \bar{x}_\perp)
\end{pmatrix}
\]

\[
\times T \exp \left[\int \begin{pmatrix}
\Omega(t') & I \\
-\omega^2(t') & \Omega(t')
\end{pmatrix} dt' \right] \begin{pmatrix}
\tilde{\psi}(t_0) \\
d\tilde{\psi}(t_0) / dt_0
\end{pmatrix}
\]

- The instantaneous Landau energies

\[
\omega_n^2(t) = qB(t)(2n+1) + m^2 + k_z^2
\]

- The continuous transitions among Landau levels

\[
\langle m,t | \Omega(t) | n,t \rangle = \frac{\dot{B}(t)}{4B(t)} \left(\sqrt{n(n-1)} \delta_{m,n-2} - \sqrt{(n+1)(n+2)} \delta_{m,n+2} \right)
\]
2nd Quantized Formulation

- Hamiltonian from the field action [SPK, Ann Phys. 350 in press (‘14)],

\[
H_{\perp} = \int d^2 x_{\perp} \left[\Pi^2_{\perp} + \Phi_{\perp} \left(\bar{p}^2_{\perp} + \omega^2_L(t)\bar{x}^2_{\perp} + m^2 - 2\omega_L(t)L_z \right) \Phi_{\perp} \right]
\]

- QED in the 2nd quantized formulation
 - becomes the relativistic theory of time-dependent, coupled, oscillators due to the angular momentum in a time-dependent magnetic field with/without an electric field.
 - becomes the relativistic theory of time-dependent, decoupled oscillators in a pure electric field.

- QED in general EM fields is an interesting problem as analog of quantum cosmology or Hawking radiation.
Transitions from Quantum to Classical Cosmology
From QG to SQG to CG

Quantum Gravity

\[\hat{G}_{\mu\nu} = 8\pi G \hat{T}_{\mu\nu} \]

Quantum cosmology (wave function of the universe)

\[G = \frac{1}{m_p^2} \ll 1 \]

Semiclassical Quantum Gravity

\[G^C_{\mu\nu} + G^Q_{\mu\nu}[G] = 8\pi G \left< \hat{T}_{\mu\nu} \right> \]

QFT in curved spacetime, Hawking radiation, pair production

\[\hbar \ll 1 \]

Classical Gravity

\[G^C_{\mu\nu} + G^Q_{\mu\nu}[G] = 8\pi G \left(T^C_{\mu\nu} + T^Q_{\mu\nu}[\hat{h}] \right) \]

Inflationary models
What is Quantum Cosmology?
Second Quantized Universe

• The wave function of universe in the superspace for FRW geometry and a minimal scalar

\[ds^2 = -da^2 + a^2 d\phi^2 \]

• The Hamiltonian constraint and the Wheeler-DeWitt equation

\[
H(a, \phi) = -\left(\pi_a^2 + V_G(a) \right) + \frac{1}{a^2} \left(\pi_\phi^2 + 2a^6 V(\phi) \right) = 0
\]

\[
\left[-\nabla^2 - V_G(a) + 2a^4 V(\phi)\right]\Psi(a, \phi) = 0
\]

\[
\nabla^2 = -\frac{\partial^2}{\partial a^2} + \frac{1}{a^2} \frac{\partial^2}{\partial \phi^2}, \quad V_G(a) = ka^2 - 2\Lambda a^4
\]
Hartle-Hawking Wave Function

Euclidean solutions for a FRW coupled to a massive field scalar [Hawking, NPB 239 (‘84)]
Quantum Universes in Superspace
[SPK, Page, PRD 45 (‘92); SPK, PRD 46 (‘92)]

- The scalar field for single-field inflation model
 \[V(\phi) = \lambda_{2p} \phi^{2p} / (2p) \]

- The eigenfunctions and the Symanzik scaling law
 \[H_M(\phi, a)\Phi_n(\phi, a) = E_n(a)\Phi_n(\phi, a) \]
 \[E_n(a) = \left(\lambda_{2p} a^6 / p \right)^{1/(p+1)} \varepsilon_n \]
 \[\Phi_n(\phi, a) = \left(\lambda_{2p} a^6 / p \right)^{1/4(p+1)} F_n \left(\left(\lambda_{2p} a^6 / p \right)^{1/(p+1)} \phi \right) \]

- The coupling matrix among the energy eigenfunctions
 \[\frac{\partial}{\partial a} \Phi(\phi, a) = \Omega(a)\Phi(\phi, a) \]
 \[\Omega_{mn}(a) = \frac{3}{4(p + 1)a} (\varepsilon_m - \varepsilon_n) \int d\zeta F_m(\zeta)F_n(\zeta)\zeta^2 \]
Quantum Universes in Superspace

- The two-component wave function of the universe
 \[
 \begin{pmatrix}
 \Psi(a, \phi) \\
 \partial \Psi(a, \phi) / \partial a
 \end{pmatrix} =
 \begin{pmatrix}
 \Phi^T (\phi, a) & 0 \\
 0 & \Phi^T (\phi, a)
 \end{pmatrix}
 \]

- The off-diagonal components are the gravitational part equation only with \(V_G(a') - E / a'^2 \).

- The continuous transitions among energy eigenfunctions.
Oscillatory Behavior via Squeezing

• The wave function of the massive scalar field universe near the Big Bang singularity is a squeezed state of harmonic wave functions

\[
\left| \Psi(\alpha, \phi) \right\rangle = \left[\Phi^{T}(\alpha, \phi) \right] e^{\Omega(\alpha - \alpha_0)} \left[\left| \psi(\alpha_0) \right\rangle + (\alpha - \alpha_0) \frac{d}{d\alpha_0} \left| \psi(\alpha_0) \right\rangle \right]
\]

\[
\alpha = \ln(a), \quad \Omega = \frac{3}{4} \left(\hat{c}^2 - \hat{c}^+ \hat{c}^2 \right), \quad E = me^{3\alpha} \left(2\hat{c}^+ \hat{c} + 1 \right) - ke^{4\alpha}
\]

• The oscillatory behavior via squeezing with an almost constant magnitude [SPK, PRD 46 (‘92), NPB Proc. Suppl 246 (‘14)] is similar to the chaotic behavior of a more complex, homogeneous, anisotropic (Mixmaster) universe without matter [Belinski, Khalatnikov, Lifshitz (‘70)].
Wave Packet for FRW with a Minimal Scalar

A closed universe \((k=1), m = 6, \) and \(n = 120\) (harmonic quantum number) [Fig. from Kiefer, PRD 38 (88)]
Third Quantization
Third Quantization in 3+1 Dimensions

<table>
<thead>
<tr>
<th>Second quantization</th>
<th>Third quantization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>Universe</td>
</tr>
<tr>
<td>Interaction Vertex</td>
<td>Topology Change</td>
</tr>
<tr>
<td>Field</td>
<td>Third Quantized Field</td>
</tr>
<tr>
<td>Spacetime</td>
<td>Superspace of Three Geometries</td>
</tr>
<tr>
<td>Free Laplacian</td>
<td>Wheeler-DeWitt Operator</td>
</tr>
<tr>
<td>Vacuum</td>
<td>Void</td>
</tr>
</tbody>
</table>

Third Quantization

- The WDW equation from the third quantized Hamiltonian

\[S = \int d\alpha d\phi \left[-\left(\frac{\partial \Psi}{\partial \alpha} \right)^2 + \frac{1}{a^2} \left(\frac{\partial \Psi}{\partial \phi} \right)^2 + \left(2a^4 V(\phi) - V_G(a) \right) \Psi^2 \right] \]

- A massless field is a sum of \(a \)-dependent oscillators [Banks, NPB 309 (‘88); McGuigan, PRD 38 (‘88); Giddings, Strominger, NPB 321 (‘89); Hosoya, Morikawa, PRD 39 (‘89); Abe, PRD 47 (‘93); SPK, Kim, Soh, NPB 406 (‘93); Horiguchi, 48 (‘93)] and is a tachyonic state for the closed universe [SPK, NPB Proc. Suppl. 246 (‘14)].

- The third quantization of a massive field is analogous to the second quantized charged KG in a time-dependent, homogeneous, magnetic field \(\vec{A}(t, \vec{r}) = \vec{B}(t) \times \vec{r} / 2 \).
Third Quantization

- Expand the wave function by the energy eigenfunctions of Hamiltonian, $\Psi(a, \phi) = \Phi^T(\phi, a) \cdot \tilde{\psi}(a)$, for the scalar field to obtain the third quantized Hamiltonian

$$H(a) = \frac{1}{2} \tilde{\pi}^T \cdot \tilde{\pi} - \tilde{\pi}^T \Omega(a) \tilde{\psi} + \frac{1}{2a^2} \tilde{\psi}^T E(a) \tilde{\psi}$$

where

$$\tilde{\pi} = \partial \tilde{\psi}(a) / \partial a + \Omega(a) \tilde{\psi}(a)$$

- The massive scalar quantum cosmology can be solved in the sense that the coupling matrix Ω and the energy-eigenvalue matrix E are explicitly known.
Intense Lasers Simulation of Quantum Universe
WDW Eq vs KG Eq in B(t)

- Wheeler-DeWitt equation for FRW universe with a massive scalar field

\[
\begin{align*}
- \pi_a^2 & + V_G(a) + \frac{1}{a^2} \left(\pi_\phi^2 + a^6 m^2 \phi^2 \right) \Psi(a, \phi) = 0
\end{align*}
\]

- Transverse motion of a charged scalar in a time-dependent, homogeneous, magnetic field B(t)

\[
\begin{align*}
\frac{\partial^2}{\partial t^2} & + \left(\vec{p}_\perp + \frac{qB(t)}{2} \right)^2 \vec{x}_\perp - qB(t)L_z + m^2 + k_z^2 \Phi_\perp(t, \vec{x}_\perp) = 0
\end{align*}
\]
Quantum Cosmology vs Scalar QED

<table>
<thead>
<tr>
<th>Quantum Universe</th>
<th>Scalar QED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universes</td>
<td>Charged scalars</td>
</tr>
<tr>
<td>WDW Equation</td>
<td>KG Equation</td>
</tr>
<tr>
<td>Superspace of spacetime & matter</td>
<td>Electromagnetic fields</td>
</tr>
<tr>
<td>Massive scalar in early universe ($V_g \approx 0$)</td>
<td>Scalar in homogeneous magnetic field</td>
</tr>
<tr>
<td>Coupling of field harmonic wave functions</td>
<td>Coupling of Landau levels</td>
</tr>
<tr>
<td>Wave functions of universe</td>
<td>Quantum motion of charge</td>
</tr>
</tbody>
</table>
Conclusion

• **Scalar QED** is an analogue of quantum cosmology with a massive scalar field
 – Homogeneous, time-dependent magnetic field ↔ massive scalar
 – Homogeneous, time-dependent electric field ↔ gravitational potential

• **Quantum universe may be simulated by relativistic quantum motion of charged particles in a homogeneous, time-dependent magnetic and an electric fields.**
Why Massive Scalar Field Quantum Cosmology?
9-Year WMAP: Single-Field Inflation Models
[Astrophys. J. Suppl. 208 (‘13)]
Planck 2013 Results
[arXiv:1303.5082v2]